博客
关于我
tensorflow python3 minist keras简单卷积网络实现
阅读量:371 次
发布时间:2019-03-05

本文共 4485 字,大约阅读时间需要 14 分钟。

 

 

from __future__ import print_functionimport numpy as npfrom keras.datasets import mnistfrom keras.models import Sequentialfrom keras.layers.core import Dense, Dropout, Activation,Flattenfrom keras.optimizers import RMSpropfrom keras.utils import np_utilsfrom keras.layers.convolutional import Conv2D, MaxPooling2Dimport matplotlib.pyplot as pltnp.random.seed(1671)  # for reproducibility# network and trainingNB_EPOCH = 20BATCH_SIZE = 128VERBOSE = 1NB_CLASSES = 10   # number of outputs = number of digitsOPTIMIZER = RMSprop() # optimizer, explainedin this chapterN_HIDDEN = 128VALIDATION_SPLIT=0.2 # how much TRAIN is reserved for VALIDATIONDROPOUT = 0.3# data: shuffled and split between train and test sets(X_train, y_train), (X_test, y_test) = mnist.load_data()#X_train is 60000 rows of 28x28 values --> reshaped in 60000 x 784RESHAPED = 784#X_train = X_train.reshape(60000, 28,28,1)X_test = X_test.reshape(10000, 28,28,1)X_train = X_train.astype('float32')X_test = X_test.astype('float32')# normalize X_train /= 255X_test /= 255print(X_train.shape[0], 'train samples')print(X_test.shape[0], 'test samples')# convert class vectors to binary class matricesY_train = np_utils.to_categorical(y_train, NB_CLASSES)Y_test = np_utils.to_categorical(y_test, NB_CLASSES)# M_HIDDEN hidden layers# 10 outputs# final stage is softmaxmodel = Sequential()model.add(Conv2D(32, kernel_size=5, padding='same',                        input_shape=(28, 28, 1)))#32个卷积核 , model.add(Activation('relu'))model.add(MaxPooling2D(pool_size=(2, 2)))#池化层model.add(Dropout(0.25))#随机丢弃层model.add(Conv2D(64, kernel_size=5, padding='same'))#64个卷积核model.add(Activation('relu'))model.add(MaxPooling2D(pool_size=(2, 2)))#池化层model.add(Dropout(0.25))#随机丢弃层model.add(Flatten())model.add(Dense(1024))model.add(Activation('relu'))model.add(Dropout(0.5))model.add(Dense(NB_CLASSES))model.add(Activation('softmax'))model.summary()model.compile(loss='categorical_crossentropy',              optimizer=OPTIMIZER,              metrics=['accuracy'])history = model.fit(X_train, Y_train,                    batch_size=BATCH_SIZE, epochs=6,                    verbose=VERBOSE, validation_split=VALIDATION_SPLIT)score = model.evaluate(X_test, Y_test, verbose=VERBOSE)print("\nTest score:", score[0])print('Test accuracy:', score[1])# list all data in historyprint(history.history.keys())# summarize history for accuracyplt.plot(history.history['acc'])plt.plot(history.history['val_acc'])plt.title('model accuracy')plt.ylabel('accuracy')plt.xlabel('epoch')plt.legend(['train', 'test'], loc='upper left')plt.show()# summarize history for lossplt.plot(history.history['loss'])plt.plot(history.history['val_loss'])plt.title('model loss')plt.ylabel('loss')plt.xlabel('epoch')plt.legend(['train', 'test'], loc='upper left')plt.show()

model summary

_________________________________________________________________

Layer (type)                 Output Shape              Param #   
=================================================================
conv2d_1 (Conv2D)            (None, 28, 28, 32)        832       
_________________________________________________________________
activation_1 (Activation)    (None, 28, 28, 32)        0         
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 14, 14, 32)        0         
_________________________________________________________________
dropout_1 (Dropout)          (None, 14, 14, 32)        0         
_________________________________________________________________
conv2d_2 (Conv2D)            (None, 14, 14, 64)        51264     
_________________________________________________________________
activation_2 (Activation)    (None, 14, 14, 64)        0         
_________________________________________________________________
max_pooling2d_2 (MaxPooling2 (None, 7, 7, 64)          0         
_________________________________________________________________
dropout_2 (Dropout)          (None, 7, 7, 64)          0         
_________________________________________________________________
flatten_1 (Flatten)          (None, 3136)              0         
_________________________________________________________________
dense_1 (Dense)              (None, 1024)              3212288   
_________________________________________________________________
activation_3 (Activation)    (None, 1024)              0         
_________________________________________________________________
dropout_3 (Dropout)          (None, 1024)              0         
_________________________________________________________________
dense_2 (Dense)              (None, 10)                10250     
_________________________________________________________________
activation_4 (Activation)    (None, 10)                0         
=================================================================
Total params: 3,274,634

转载地址:http://afpg.baihongyu.com/

你可能感兴趣的文章
multiprocessing.pool.map 和带有两个参数的函数
查看>>
MYSQL CONCAT函数
查看>>
multiprocessing.Pool:map_async 和 imap 有什么区别?
查看>>
MySQL Connector/Net 句柄泄露
查看>>
multiprocessor(中)
查看>>
mysql CPU使用率过高的一次处理经历
查看>>
Multisim中555定时器使用技巧
查看>>
MySQL CRUD 数据表基础操作实战
查看>>
multisim变压器反馈式_穿过隔离栅供电:认识隔离式直流/ 直流偏置电源
查看>>
mysql csv import meets charset
查看>>
multivariate_normal TypeError: ufunc ‘add‘ output (typecode ‘O‘) could not be coerced to provided……
查看>>
MySQL DBA 数据库优化策略
查看>>
multi_index_container
查看>>
mutiplemap 总结
查看>>
MySQL Error Handling in Stored Procedures---转载
查看>>
MVC 区域功能
查看>>
MySQL FEDERATED 提示
查看>>
mysql generic安装_MySQL 5.6 Generic Binary安装与配置_MySQL
查看>>
Mysql group by
查看>>
MySQL I 有福啦,窗口函数大大提高了取数的效率!
查看>>